George Tsoukalas

Department of Mathematics, Rutgers University, Piscataway, New Jersey, 08901

georgetsoukalas.github.io linkedin.com/in/georgetsoukalasmath

Phone: (914) 843-8102 Email: george.tsoukalas@rutgers.edu

EDUCATION

Rutgers University

Bachelor of Science - Mathematics & Computer Science; GPA: 4.00/4.00

- September 2019 May 2023 • (2021) David Martin Weiss Memorial Award: Awarded to a sophomore demonstrating excellence as a math major.
- (2022) Weill Scholarship: Awarded to full-time students majoring in mathematics based on academic merit.
- (2022) John Bogart Prize: For exceptional achievement in mathematics.
- **Research Experience**

Automated Reasoning Lab

Undergraduate Researcher

Rutgers University, New Jersey August 2022 - Present

New Brunswick, New Jersey

- Researching syntax-guided synthesis (SyGuS) of numerical invariants for program verification & synthesis.
- Implementing neurosymbolic programming techniques with dPads and DifferentiableSygus using PyTorch.

Numerical Semigroups REU

Undergraduate Researcher

San Diego State University, California

- May 2022 August 2022
- Researched connections between numerical semigroups and a geometric object called the Kunz Cone.
- Uncovered several key properties regarding symmetries of the Kunz Cone and their action on unimaximal faces.
- Performed probabilistic analysis on Erdős-Rényi type random numerical semigroups towards Wilf's Conjecture.

Matrix Analysis REU

Undergraduate Researcher

College of William & Mary, Virginia May 2021 - September 2021

- Researched generalized notions of graph adjacency matrices, including questions of eigenvalue assignments and disparity.
- Characterized k-NIM trees, extending a characterization of 1-NIM Trees by mentor Charles R. Johnson.
- Utilized singularity analysis to enumerate these trees according to the newly found characterization.
- Publication: (Submitted) k-NIM Trees: Characterization and Enumeration, arXiv:2208.05450, July 2022.

Projects

- Indie Game Development: Developed a Roblox game which registered over 23M player visits, including a total of 6.1M unique players. Recorded 100K+ daily active users over multiple months. Appeared within the top 10, of thousands, for average playtime sitewide. Utilized knowledge of client-server architecture. Published bi-weekly updates.
- Jigsaw Puzzle Solver: Implemented a deep convolutional network in TensorFlow to find matches among input puzzle pieces, with fairly good accuracy. Additionally implemented a direct approach to compare edges of pieces according to several metrics, including CIE94 and the ℓ^p norm. Used topological sort to find linear extension of resultant piece ordering.
- Superimposed N-Queen Problem: Implemented simulated annealing and various probability scheduling algorithms to achieve lower bounds on best-possible configurations for the N superimposed N-Queen problem for several unresolved cases N = 8, 9, 10 following work by Vasquez (2004).
- Othello Computer Engine: Implemented both Othello/Reversi and MiniMax to test heuristics for tree-search towards creating a strong machine opponent - strength was intermediate. Used Python's pygame for visualization. Working towards implementing Deep Reinforcement Learning to improve performance.
- Directed Reading Program: Researched cardinal invariants with graduate student. Studied several invariants, including the bounding, dominating, splitting, and reaping numbers. Presented Cichon's Diagram of cardinal characteristic results. TECHNICAL SKILLS

Algorithms (Graduate) Combinatorics I & II (Graduate) Measure Theory (Graduate)	 Languages: Python, Lua, Java, C, C++, OCaml, Javascript LEVANT COURSEWORK 	• Math Software: Lean4, Sage, Maple, MatLab	
 Nonlinear Optimization (Graduate) Probability Theory (Graduate) Artificial Intelligence Machine Learning Formal Languages & Automata Graph Theory (Graduate) Graph Theory (Graduate) Graph Theory (Graduate) Graph Theory (Graduate) Game Theory (Graduate) Intelligence Matrix Analysis Mathematical Analysis I & II Point-Set Topology 	 Algorithms (Graduate) Nonlinear Optimization (Graduate) Probability Theory (Graduate) Artificial Intelligence Machine Learning Formal Languages & Automata 	 Measure Theory (Graduate) Ergodic Theory (Graduate) Fourier Analysis (Graduate) Complex Analysis (Graduate) Algebra I (Graduate) Point-Set Topology 	

Presentations

• Geometric characteristics of symmetric numerical semigroups in the Kunz Cone - San Diego State, August 2022

• Eigenvalues, Multiplicities, and Graphs - College of William & Mary, July 2021

• Cardinal characteristics of the Continuum - Rutgers University, May 2021

SERVICE

```
Department of Mathematics
```

Undergraduate Grader

August 2020 - May 2021 • Graded for two sections of Math 311: Intro to Real Analysis, providing timely feedback to both the students and the instructor.

SAS Honors Program

Undergraduate Tutor

Rutgers University September 2020 - Present

Rutgers University

• Tutored peers in Math 300: Introduction to Mathematical Reasoning and Math 411: Mathematical Analysis I.